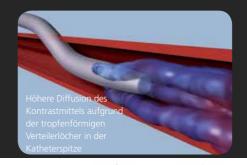

KM-Injektion bedeutet mehr als nur Flow und Volumen





## Kontrastmittelgabe über eine Venen Verweilkanüle (Flexüle, Braunüle, Vigo, ...)


www.alex-riemer.de

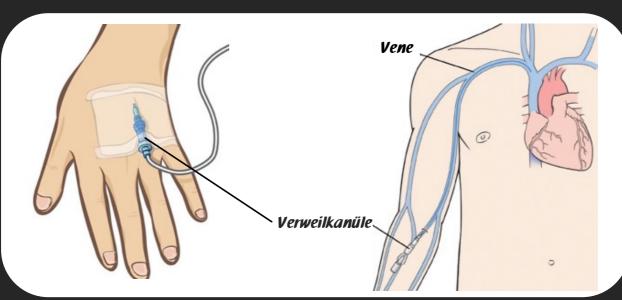


#### BD Nexiva Diffusics Verweilkanülen für die Hochdruckinjektion








|                | *         |           | A           |           | A           |           | A           |           |             |           |
|----------------|-----------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|-------------|-----------|
|                | Ref. 3    |           | Ref. 383692 |           | Ref. 383693 |           | Ref. 383694 |           | Ref. 383695 |           |
|                | 24 Gauge  | x 19 mm   | 22 Gauge    | x 25 mm   | 20 Gauge    | x 25 mm   | 20 Gauge    | x 32 mm   | 18 Gauge    | e x 32mm  |
| Kontrastmittel | @22° C    | @37° C    | @22° C      | @37° C    | @22° C      | @37° C    | @22° C      | @37° C    | @22° C      | @37° C    |
|                | (ml/Sek.) | (ml/Sek.) | (ml/Sek.)   | (ml/Sek.) | (ml/Sek.)   | (ml/Sek.) | (ml/Sek.)   | (ml/Sek.) | (ml/Sek.)   | (ml/Sek.) |
| Omnipaque® 300 | 3,0       | 3,0       | 5,5         | 7,5       | 7,0         | 9,5       | 6,5         | 9,5       | 7,5         | 10,0      |
| Optiray® 350   | 3.0       | 3,0       | 5,0         | 7,0       | 6,0         | 8,5       | 6,0         | 8,5       | 6,5         | 9,5       |
| Isovue® 370    | 3,0       | 3,0       | 4,5         | 7,0       | 5,5         | 8,0       | 5,0         | 7,5       | 5,5         | 8,0       |
| Omnipaque® 350 | 3,0       | 3,0       | 4,0         | 6,5       | 5,5         | 7,5       | 5,0         | 6,5       | 5,5         | 7,0       |
| Visipaque® 320 | 2,5       | 3,0       | 4,0         | 5,5       | 5,0         | 7,0       | 4,5         | 6,5       | 5,0         | 8,0       |

www.alex-riemer.de

5

## Wenn Möglich Verweilkanüle in eine Kubitalvene (Ellenbeuge) legen





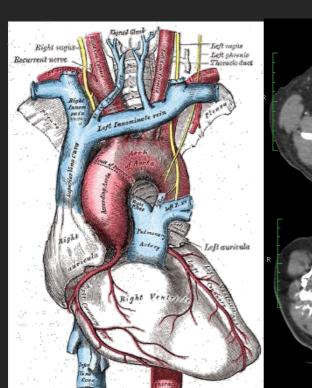
Venen am Handrücken haben einen geringen Durchmesser.

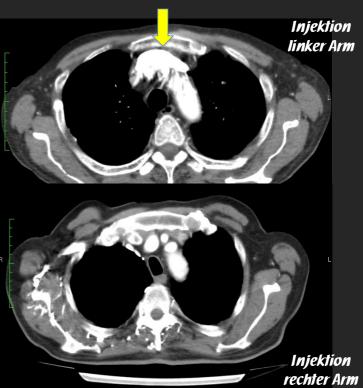
Für hohe Injektionsraten (ab 3,5 ml/s) ist diese Position oft nicht geeignet Venen in der Ellenbeuge sind großkalibrig und der Weg zum Herzen ist kürzer als bei der Injektion über den Handrücken Eignet sich gut für die KM-Hochdruckinjektion

www.alex-riemer.de






## Kontrastmittelgabe über eine Venen Verweilkanüle Rechter oder linker Arm?

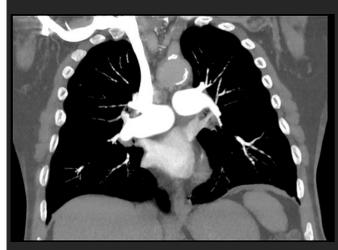

www.alex-riemer.de

-

#### Einstromartefakte links vs. rechts








Quelle: Wikipedia www.alex-riemer.de

\_



#### Einstromartefakte links vs. rechts





www.alex-riemer.de

.





## Einfluss der Armposition auf die KM-Injektion

#### Wenn die Arme über dem Kopf gelagert werden, kann dies den KM-Fluss vom Arm zum Herzen stören.

Fragen Sie die zu Untersuchende Person, ob ihr üblicherweise die Arme "einschlafen", wenn sie die Arme über den Kopf nehmen





Arme unten

Arme über dem Kopf

Quelle: MDCT Academy CTPA-Course

www.alex-riemer.de

11

#### Empfohlene Armposition von Prof. Dr. Charbel Saade







#### Diese Armposition stellt den optimalen Kontrastmittelfluss vom Arm zum Herzen sicher.

Eine spezielle Halterung, die diese Armposition unterstützt befindet sich in Entwicklung in Zusammenarbeit mit der Firma Pearl-Technology





## Kontrastmittelgabe über Fußrückenvene

www.alex-riemer.de

10

#### Kontrastmittelinjektion über Füßrückenvene



#### Viel NaCl verwenden

- (ca. 100 ml NaCl) um das KM in Richtung Herz zu "schieben"
- Im Vergleich zu einer KM Injektion über eine Kubitalvene, benötigt das Kontrastmittel 10s bis 15s länger um am Herzen anzukommen, wenn es über eine Fußrückenvene injiziert wird.
- o Flow: 2,5-3 ml/s wenn möglich
- Wenn möglich oberhalb des Knöchels stauen, um sicherzustellen, dass das KM über die tiefen Beinvenen in Richtung Herzen fließt

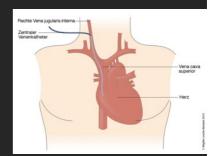


#### Fußrückenvene 100 ml KM@ 3ml/s + 120 <u>ml NaCl</u>



15



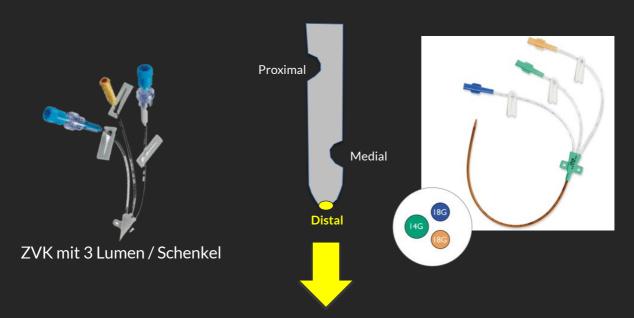



## Kontrastmittelgabe über ZVK Zentraler Venen Katheter

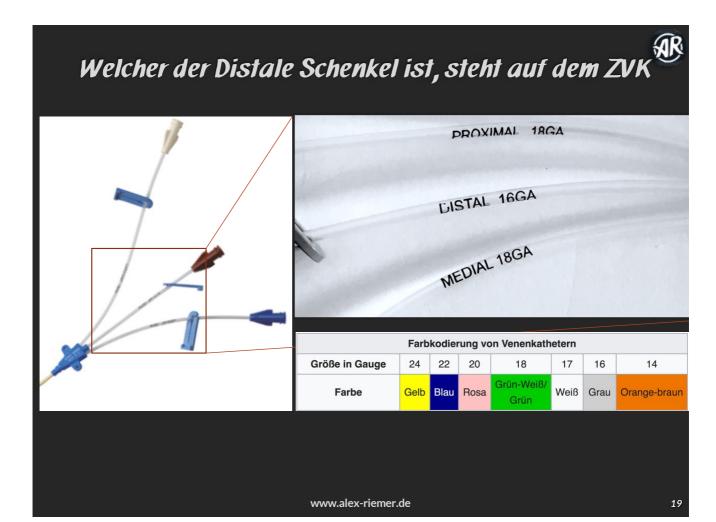
#### Zentraler Venen Katheter

AR.

- Wird über die rechte Halsvene (V. jugularis) eingeführt und die Spitze kommt im/vor dem rechten Vorhof zum Liegen.
- Meistens haben ZVK's drei sogenannte Schenkel (Tri-Lumen-ZVK)
- Jeder dieser Schenkel hat seine Austrittöffnung an einer anderen Position am Ende des ZVK.
  - Proximaler Schenkel
  - Medialer Schenkel
  - Distaler Schenkel
- Es gibt auch ZVK's mit 2- oder 4 Schenkel





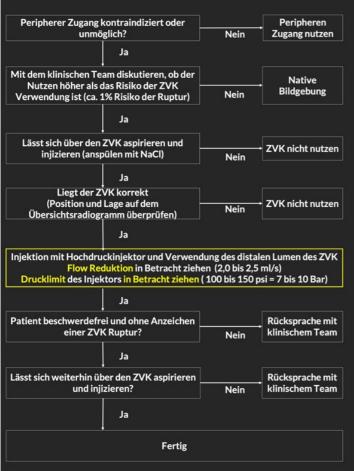


www.alex-riemer.de

17

#### Für die Kontrastmittelinjektion über einen ZVK sollte R möglichst der distale Schenkel verwendet werden



KM-Injektion über den distalen Schenkel! KM tritt dann aus der ZVK-Spitze aus






## Komplikationen bei der Kontrastmittelgabe ® über ZVK sind sehr sehr selten

Mit freundlicher Genehmigung von Priv. Doz. Dr. Niehues ; Charité





The use of central venous catheters for intravenous contrast injection for CT examinations

BJR 2011

Injektion mit Hochdruckinjektor und Verwendung des distalen Lumen des ZVK

#### Flow Reduktion

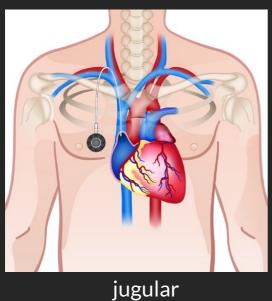
in Betracht ziehen (2,0 bis 2,5 ml/s)

#### **Reduktion des Drucklimit**

des Injektors in Betracht ziehen ( 100 bis 150 psi = 7 bis 10 Bar)






## Kontrastmittelgabe über PORT

www.alex-riemer.de

23

#### Port-Systeme - zwei Lokalisationen







brachial



#### PORT-Systeme – zwei Arten

#### "Normale" Port Systeme

- Im Allgemeinen wird versucht, die Injektion über diesen Zugang zu vermeiden
- Wenn kein alternativer Zugang möglich -
  - Maximal Flow 1,5 ml/s

#### "Power Injektor" Port Systeme

- Je nach Art bis Flow 5,5 ml/s möglich
- Flow Begrenzung von 3 ml/s in Erwägung ziehen
- Reduktion des Drucklimit des Injektors in Betracht ziehen
  - 100 bis 150 psi
  - 7 bis 10 Bar

www.alex-riemer.de

25

#### Jod Einbringrate (IDR) - [mg/s]



#### IDR = Jodkonzentration \* Flow

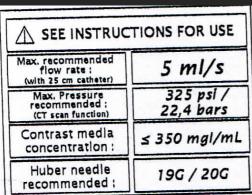
| -1 - 1/3    | Jod Einbringrate - IDR [mg/s] |          |          |          |          |  |  |  |
|-------------|-------------------------------|----------|----------|----------|----------|--|--|--|
| Flow [ml/s] | 300er KM                      | 320er KM | 350er KM | 370er KM | 400er KM |  |  |  |
| 1,0         | 300                           | 320      | 350      | 370      | 400      |  |  |  |
| 1,5         | 450                           | 480      | 525      | 555      | 600      |  |  |  |
| 2,0         | 600                           | 640      | 700      | 740      | 800      |  |  |  |
| 2,5         | 750                           | 800      | 875      | 925      | 1000     |  |  |  |
| 3,0         | 900                           | 960      | 1050     | 1110     | 1200     |  |  |  |
| 3,5         | 1050                          | 1120     | 1225     | 1295     | 1400     |  |  |  |
| 4,0         | 1200                          | 1280     | 1400     | 1480     | 1600     |  |  |  |
| 4,5         | 1350                          | 1440     | 1575     | 1665     | 1800     |  |  |  |
| 5,0         | 1500                          | 1600     | 1750     | 1850     | 2000     |  |  |  |
| 5,5         | 1650                          | 1760     | 1925     | 2035     | 2200     |  |  |  |
| 6,0         | 1800                          | 1920     | 2100     | 2220     | 2400     |  |  |  |



#### Woran erkennt man einen Power-PORT?

#### **PORT-Pass** des Patienten (sicherster Beweis)

• wird von Patienten oft zu Hause vergessen


Manche Power-PORT System erkennt man an den röntgendichten Buchstaben "CT" im Übersichtsradiogramm oder auf dem Röntgenbild

Quelle: BARD



## PORT-Pass enthält wichtige Informationen Aber ACHTUNG





| POLYSITE®<br>Implantable port                                                                  |
|------------------------------------------------------------------------------------------------|
| REF 4008                                                                                       |
| LOT 17045395                                                                                   |
| SN 0007251813                                                                                  |
| PEROUSE MEDICAL 60173 Ivry le Temple - FRANCE www.perousemedical.com Tél: +33 (0)3 44 08 17 00 |
|                                                                                                |

| Tabelle 1                                 |           |                         |           |                       |             |
|-------------------------------------------|-----------|-------------------------|-----------|-----------------------|-------------|
| Imeron                                    | 150       | 250                     | 300       | 350                   | 400         |
| pH                                        |           |                         | 6,9-7,2   |                       |             |
| Osmolalität bei 37 °C in mosmol/kg Wasser | 301 ± 14  | 435 ± 20                | 521 ± 24  | 618 ± 29              | 726 ± 34    |
| Viskosität bei 37 °C<br>in mPa⋅s          | 1,4 ± 0,1 | 2,9 ± 0,3               | 4,5 ± 0,4 | 7,5 ± 0,6             | 12,6 ± 1,1  |
| Name                                      | Туј       | Iodine co<br>pe<br>mg/n |           | Osmolality<br>kg type | Cps at 37°C |
| Nonionic                                  |           |                         |           |                       |             |
| Iopamidol (Isovue-370)                    | Mono      | omer 370                | 796       | LOCM                  | 9.4         |
| Iohexol (Omnipaque 350)                   | Mono      | omer 350                | 884       | LOCM                  | 10.4        |
| Iodixanol (Visipaque 320)                 | Din       | ner 320                 | 290       | IOCM                  | 11.8        |
| Iotrolan (Isovist)                        | Din       | ner 300                 | 320       | IOCM                  | 8.1         |
| Ioxaglate (Hexabrix)                      | Din       | ner 320                 | 600       | LOCM                  | 7.5         |
| Ioxilan (Oxilan 350)                      | Mono      | omer 350                | 695       | LOCM                  | 8.1         |
| Iopromide (Ultravist 370)                 | Mono      | omer 370                | 774       | LOCM                  | 10.0        |
| Joversol (Optiray 300)                    | Mono      | omer 300                | 651       | LOCM                  | 5.5         |
| Iomeprol (Iomeron 350)                    | Mono      | omer 350                | 618       | LOCM                  | 7.5         |





## Wonach richten sich die Parameter eines KM-Protokolls?

www.alex-riemer.de

29

#### KM-Protokolle – zwei Ausrichtungen



#### <u>Arterielle Untersuchungen</u>

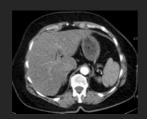
Guter arterieller Kontrast

Ein arterieller Kontrast von mehr als 300 HU

bzw.

SNR von mehr als 10

#### <u>Parenchymuntersuchungen</u>


Speziell bei Leber Fragestellungen

Guter Leberkontrast

=

Ein Parenchymkontrast von mehr als 90 HU

(40-50 HU über Nativ)







#### Welcher Injektionsparameter ist wichtig?

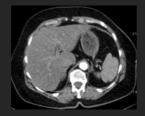
Arterielle Untersuchungen

<u>Parenchymuntersuchungen</u>

Speziell bei Leber Fragestellungen

Führender Parameter:

Jodmenge/Zeit


FLOW / Jodkonzentration

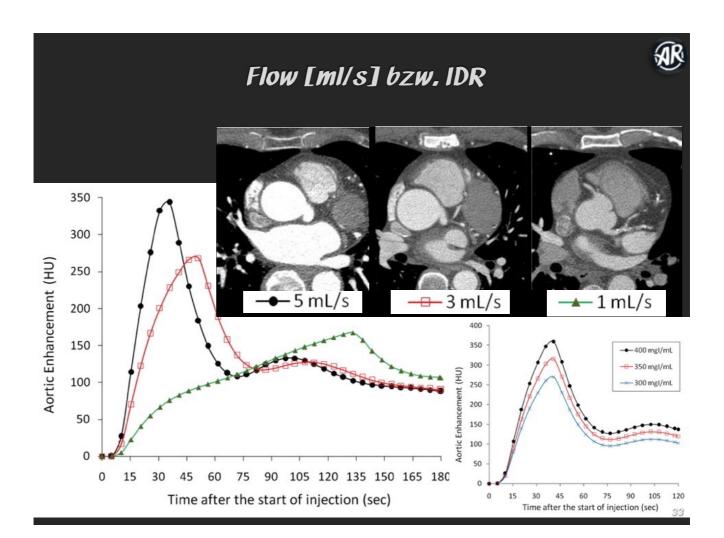
Führender Parameter:

Jodmenge

pro kg Körpergewicht

Flow nicht ganz so relevant






www.alex-riemer.de

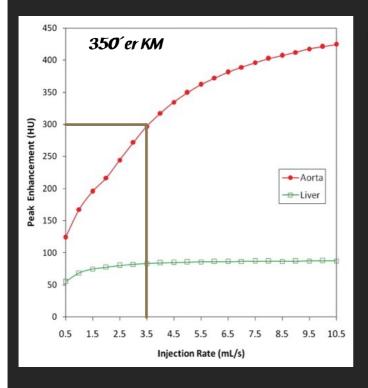
#### Flow [ml/s] / IDR [mg Jod/s]







#### Jod Einbringrate (IDR) - [mg/s]




#### IDR = Jodkonzentration \* Flow

| Flow [ml/s]   | Jod Einbringrate - IDR [mg/s] |          |          |          |          |  |  |  |  |
|---------------|-------------------------------|----------|----------|----------|----------|--|--|--|--|
| Flow [IIII/S] | 300er KM                      | 320er KM | 350er KM | 370er KM | 400er KM |  |  |  |  |
| 1,0           | 300                           | 320      | 350      | 370      | 400      |  |  |  |  |
| 1,5           | 450                           | 480      | 525      | 555      | 600      |  |  |  |  |
| 2,0           | 600                           | 640      | 700      | 740      | 800      |  |  |  |  |
| 2,5           | 750                           | 800      | 875      | 925      | 1000     |  |  |  |  |
| 3,0           | 900                           | 960      | 1050     | 1110     | 1200     |  |  |  |  |
| 3,5           | 1050                          | 1120     | 1225     | 1295     | 1400     |  |  |  |  |
| 4,0           | 1200                          | 1280     | 1400     | 1480     | 1600     |  |  |  |  |
| 4,5           | 1350                          | 1440     | 1575     | 1665     | 1800     |  |  |  |  |
| 5,0           | 1500                          | 1600     | 1750     | 1850     | 2000     |  |  |  |  |
| 5,5           | 1650                          | 1760     | 1925     | 2035     | 2200     |  |  |  |  |
| 6,0           | 1800                          | 1920     | 2100     | 2220     | 2400     |  |  |  |  |

#### Ziel: mehr als 300 HU im Gefäß bei arteriellen Untersuchungen

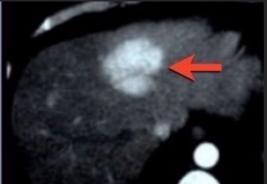




- Bei folgenden Untersuchungen sind höhere Flowraten empfehlenswert:
  - o CT-Angiographien:
    - o z.B. Aorta, LAE, Carotis, Herz
    - 4-6 ml/s (je nach Patientengewicht)
  - <sub>o</sub> CT Perfusion: 5,0 ml/s!!
  - Leber CT: 4,0 ml/s
    - für ein besseres
       Enhancement in der arteriellen Phase

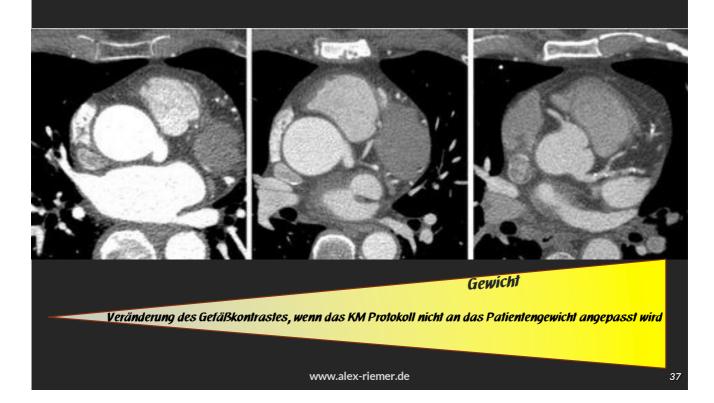
www.alex-riemer.de

35


#### Viel Jod/Zeit auch bei arteriellen Leberuntersuchungen



2,5 ml/s @ 300' er KM = 750 mg Jod/s


5,0 ml/s @ 300' er KM = 1500 mg Jod/s

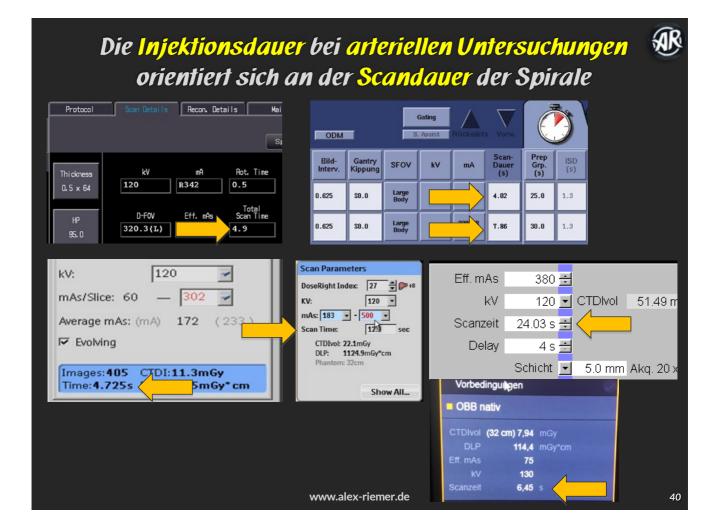




www.alex-riemer.de

## Kontrast bei arteriellen Untersuchungen in Abhängigkeit vom Gewicht, wenn man das KM-Protokoll nicht anpasst.






#### Was ist wichtig?

#### art, Phase

## Jodmenge / Zeit (FLOW / Jodkonzentration)



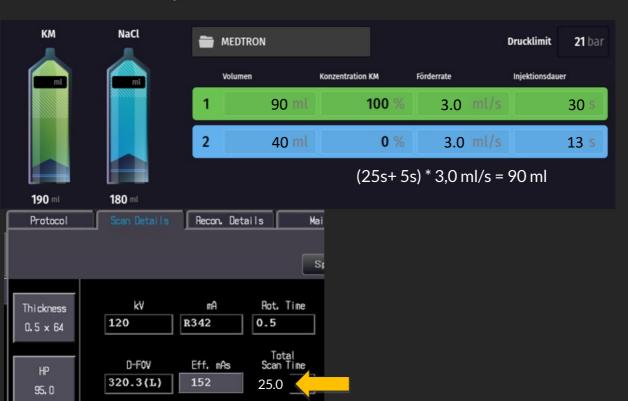




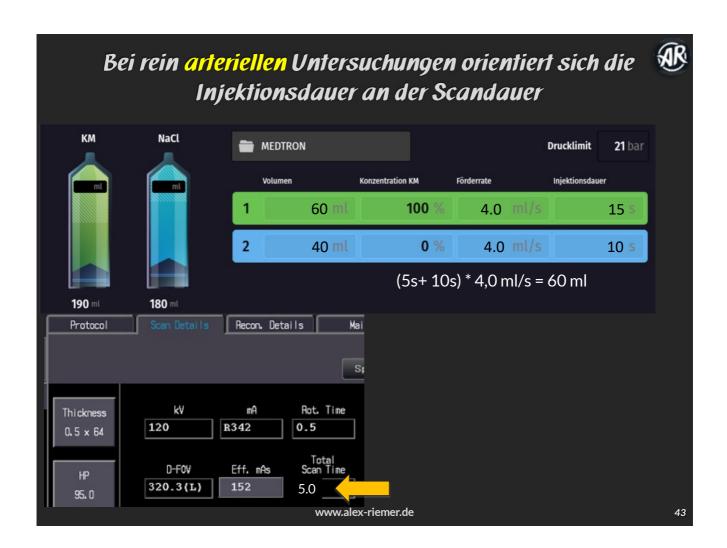
#### KM-Volumen für arterielle-/Gefäßuntersuchung

#### KM-Menge [ml] = (Scanzeit + Delay<sup>nBT</sup>) x Flow

#### Delay<sup>nBT</sup> = Delay nach dem Bolustracking


oder anders gesagt: Die zeitliche Verzögerung zwischen dem Erreichen der Triggerschwelle und dem Scanbeginn der Spirale

www.alex-riemer.de


41

#### Bei rein arteriellen Untersuchungen orientiert sich die Injektionsdauer an der Scandauer





www.alex-riemer.de



#### CTA gesamte Aorta





| KM-Protokoll basierena   | auf Se | canzeit | KM-Protokoll basierena   | i auf Sc  | canzeit |
|--------------------------|--------|---------|--------------------------|-----------|---------|
| Scanstrecke              | 650    | mm      | Scanstrecke              | 650       | mm      |
| Gesamtkollimation        | 19,2   | mm      | Gesamtkollimation        | 40        | mm      |
| PITCH                    | 0,8    |         | РПСН                     | 0,8       |         |
| Rotationsgeschwindigkeit | 0,8    | s       | Rotationsgeschwindigkeit | 0,5       | s       |
| Scangeschwindigkeit      | 19,2   | mm/s    | Scangeschwindigkeit      | 64        | mm/s    |
| Scanzeit                 | 34     | 8       | Scanzeit                 | 10        | 8       |
| Delay nach BT            | 5,0    | s       | Delay nach BT            | 5,0       | s       |
| Flow                     | 3,5    | ml/s    | Flow                     | 3,5       | ml/s    |
| Volumen                  | 136    | ml      | Volumen                  | <u>53</u> | ml      |

#### KM-Menge [ml] = (Scanzeit + Delay<sup>nBT</sup>) x Flow

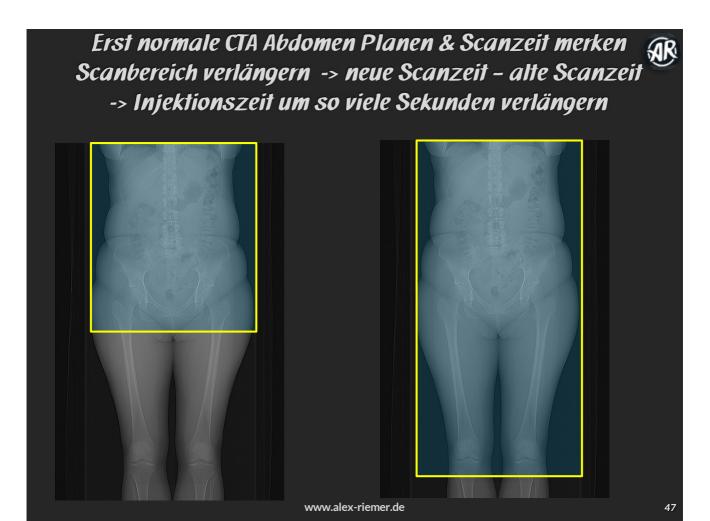


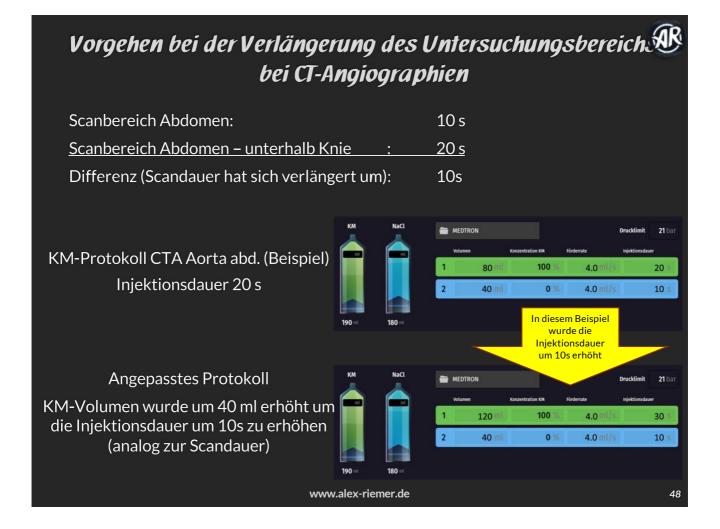
#### Arterielle Untersuchung des Abdomens



| KM-Protokoll basierend auf Scanzeit |                   |             | KM-Protokoll basierend auf Scanzeit |     |      |  |
|-------------------------------------|-------------------|-------------|-------------------------------------|-----|------|--|
| Scanstrecke 450 mm                  |                   | Scanstrecke | 450                                 | mm  |      |  |
| Gesamtkollimation                   | 19,2              | mm          | Gesamtkollimation                   | 40  | mm   |  |
| РПСН                                | PITCH 0,8         |             | РПСН                                | 0,8 | 1    |  |
| Rotationsgeschwindigkeit            |                   | s           | Rotationsgeschwindigkeit            | 0,5 | s    |  |
| Scangeschwindigkeit Scanzeit        | 19,2<br><b>23</b> | mm/s        | Scangeschwindigkeit  Scanzeit       |     | mm/s |  |
| ocunzen                             | 20                | 0           | Scanzen                             |     | 0    |  |
| Delay nach BT                       | 5,0               | s           | Delay nach BT                       | 5,0 | S    |  |
| Flow 3,5                            |                   | ml/s        | Flow                                | 3,5 | ml/s |  |
|                                     |                   |             |                                     |     |      |  |
| Volumen <u>100</u> ml               |                   | Volumen     | <u>42</u>                           | ml  |      |  |

#### KM-Menge [ml] = (Scanzeit + Delay<sup>nBT</sup>) x Flow


www.alex-riemer.de

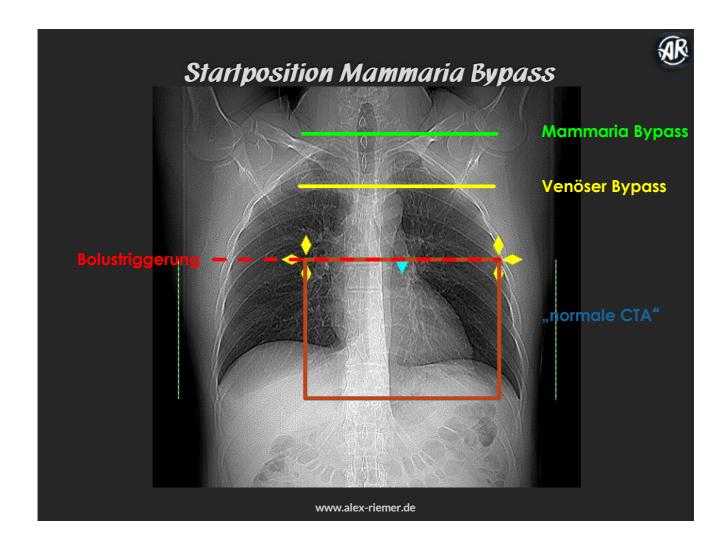

15



## CTA abd. Aorta verlängern bis unterhalb der Knie












## Längere Scanzeit Bypass-Untersuchungen

www.alex-riemer.de





## Modifiziertes CTA-Protokoll

www.alex-riemer.de

51

## EKG getriggerte Aorta ohne Anpassung des KM-Protokolls



PITCH: 0,18 Rotation: 0,3s

Scan Speed: 11,3 mm/s Scanstrecke: 30 cm Scandauer: 26s Flow: 3,0 ml

Volumen (ist): 70 ml

Volumen (soll): 93 ml

<u>Berechnung:</u> (26+5) x 3,0 = 93 ml

www.alex-riemer.de



#### Was ist wichtig?

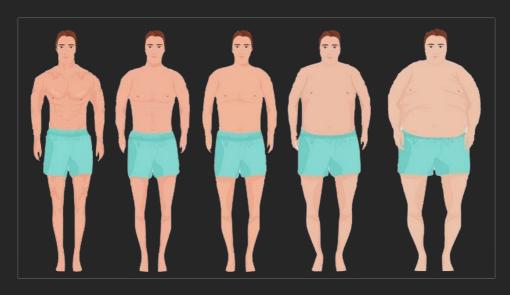
art. Phase

p.v. Phase

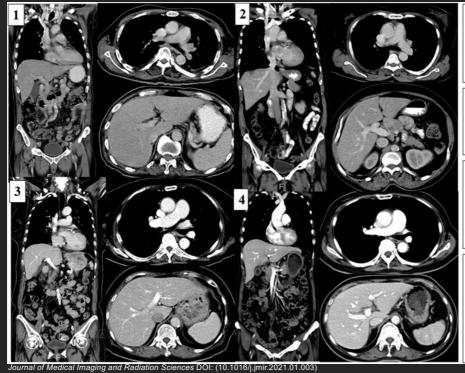
Jodmenge / Zeit (FLOW / Jodkonzentration)

Jodmenge pro kg Körpergewicht






www.alex-riemer.de


Typische KM-Protokoll in den meisten radiologischen Instituten



80 ml @ 3,0ml/s @ 300'er KM 100 ml @ 3,0ml/s @ 300'er KM



## Je niedriger die Jodkonzentration des KM, desto wichtiger sind gewichtsadaptierte KM-Protokolle



#### Grade 1: POOR

(Poor opacification of the IVC)
Low image quality that reduces
the confidence in making
diagnosis

#### Grade 2: FAIR

(Inhomogeneous opacification of the IVC)

Moderate image quality enough to make diagnosis

#### Grade 3: GOOD

(IVC was well opacified but not the hepatic veins)

Good image quality clearly demonstrating anatomical structures

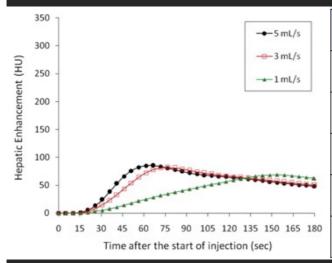
#### Grade 4: EXCELLENT

(Homogenous opacification of the IVC and hepatic veins)

Excellent image quality allow excellent differentiation of even small anatomical structure for easy evaluation

www.alex-riemer.de

55


## Kontrastmittelvolumen Abdomen CT (Leberkontrast) 360 (400) mg Jod pro kg Körpergewicht



| Gewicht | 360 mg Jod/kg Körpergewicht |          |          |          |          |  |  |  |  |
|---------|-----------------------------|----------|----------|----------|----------|--|--|--|--|
| [kg]    | 300er KM                    | 320er KM | 350er KM | 370er KM | 400er KM |  |  |  |  |
| 50      | 60                          | 56       | 51       | 49       | 45       |  |  |  |  |
| 60      | 72                          | 68       | 62       | 58       | 54       |  |  |  |  |
| 70      | 84                          | 79       | 72       | 68       | 63       |  |  |  |  |
| 80      | 96                          | 90       | 82       | 78       | 72       |  |  |  |  |
| 90      | 108                         | 101      | 93       | 88       | 81       |  |  |  |  |
| 100     | 120                         | 113      | 103      | 97       | 90       |  |  |  |  |
| 110     | 132                         | 124      | 113      | 107      | 99       |  |  |  |  |
| 120     | 144                         | 135      | 123      | 117      | 108      |  |  |  |  |
| 130     | 156                         | 146      | 134      | 126      | 117      |  |  |  |  |
| 140     | 168                         | 158      | 144      | 136      | 126      |  |  |  |  |



#### Delay Portalvenöse Phase Leber



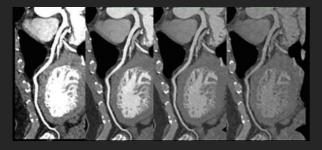
| Flow (ml/s) | Delay (s) |
|-------------|-----------|
| 1,0         | 150 s     |
| 2,0         | 90 s      |
| 3,0         | 75 s      |
| 4,0         | 65 s      |
| 5,0         | 60 s      |

Bae KT Radiology 2010;256:32-61

www.alex-riemer.de

... aber Achtung Röhrenspannung






#### Reduktion der Röhrenspannung

- Geringe Durchdringungsfähigkeit
  - Nur für schlanke Pat.
- Steigerung Jodkontrast

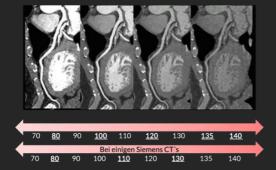
#### Erhöhung der Röhrenspannung

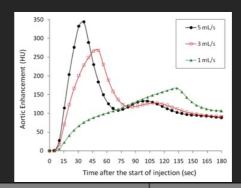
- Hohe Durchdringungsfähigkeit
  - Sehr adipöse Pat.
  - Schulter-CT
- Reduktion Jodkontrast
- Reduktion Metallartefakte





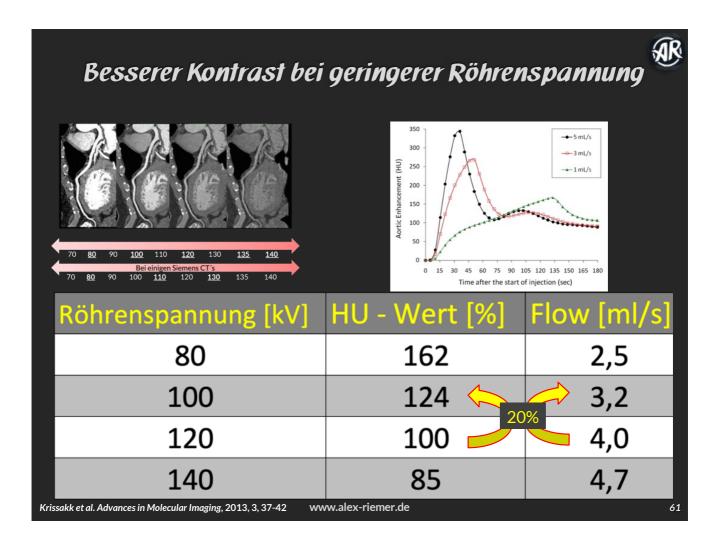
| 70                       | <u>80</u> | 90 | <u>100</u> | 110 | <u>120</u> | 130 | <u>135</u> | <u>140</u> |
|--------------------------|-----------|----|------------|-----|------------|-----|------------|------------|
| Bei einigen Siemens CT's |           |    |            |     |            |     |            |            |

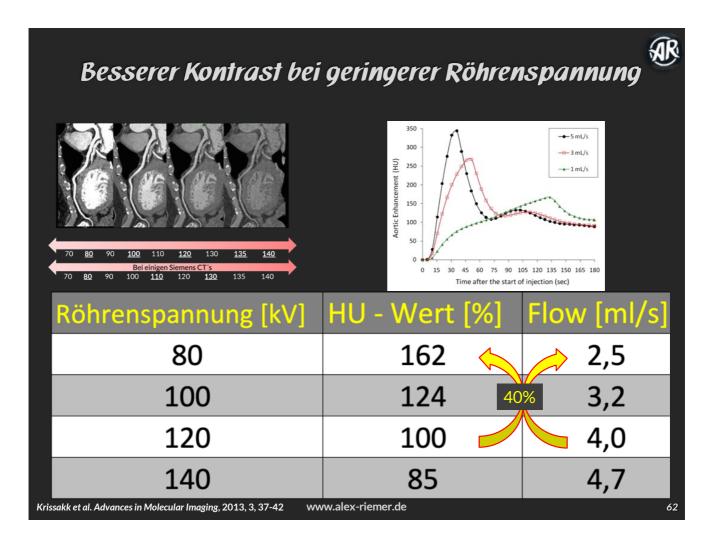

70 <u>80</u> 90 100 <u>110</u> 120 <u>130</u> 135 140

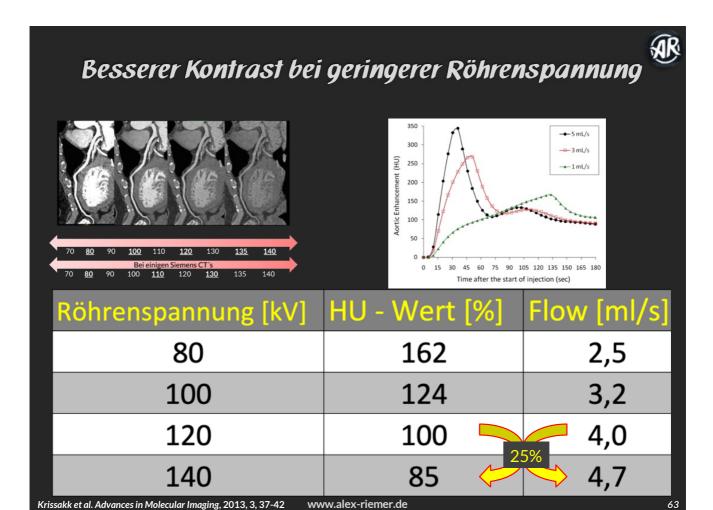

www.alex-riemer.de

59

#### Besserer Kontrast bei geringerer Röhrenspannung



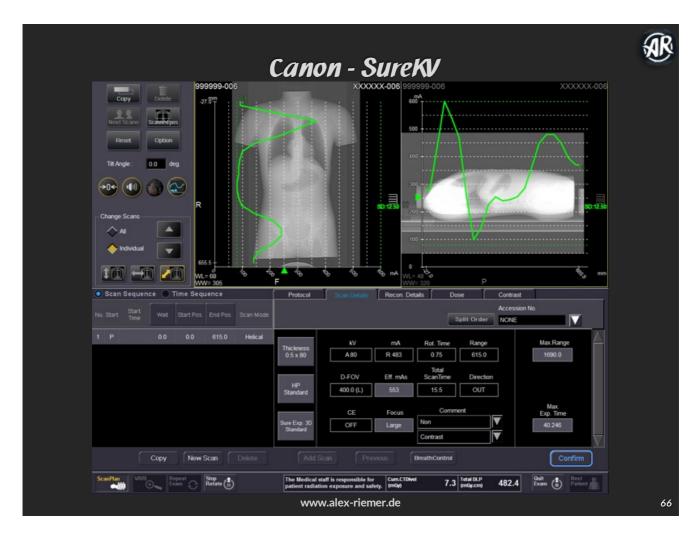




| Röhrenspannung [kV] | HU - Wert [%] | Flow [ml/s] |
|---------------------|---------------|-------------|
| 80                  | 162           | 2,5         |
| 100                 | 124           | 3,2         |
| 120                 | 100           | 4,0         |
| 140                 | 85            | 4,7         |

Krissakk et al. Advances in Molecular Imaging, 2013, 3, 37-42



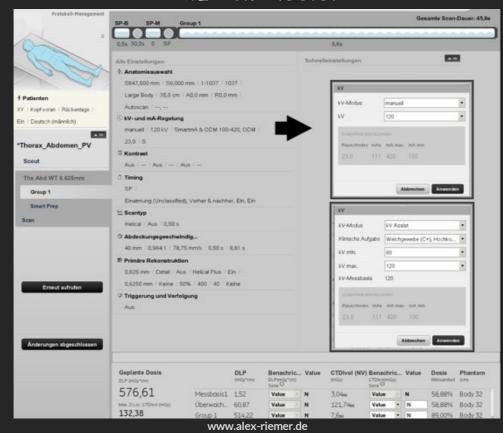


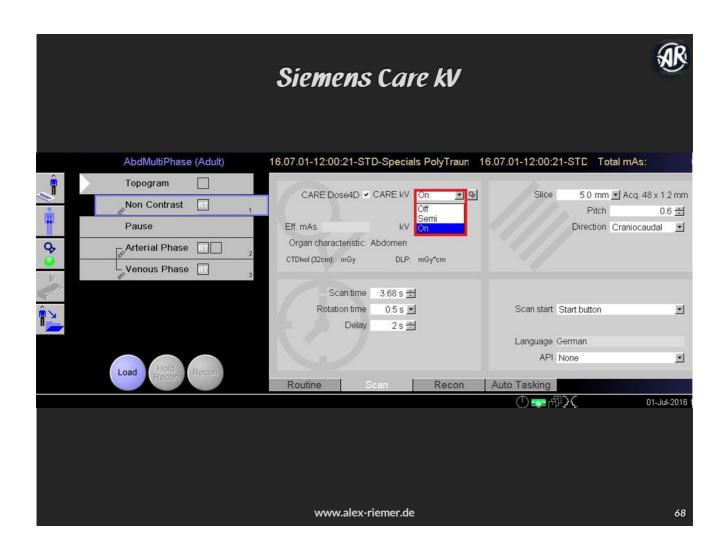






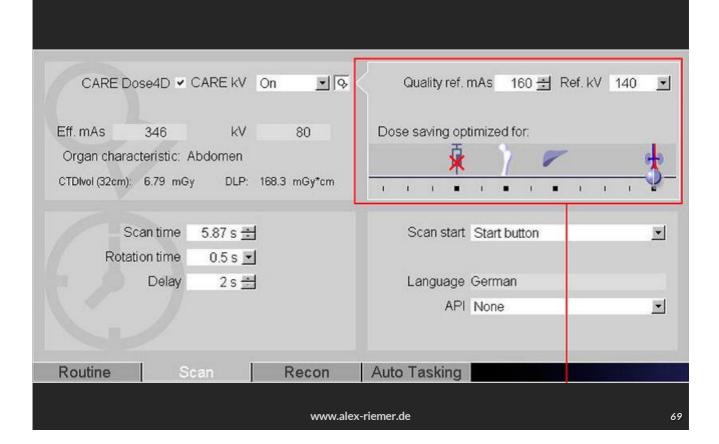

### Auto kV Software

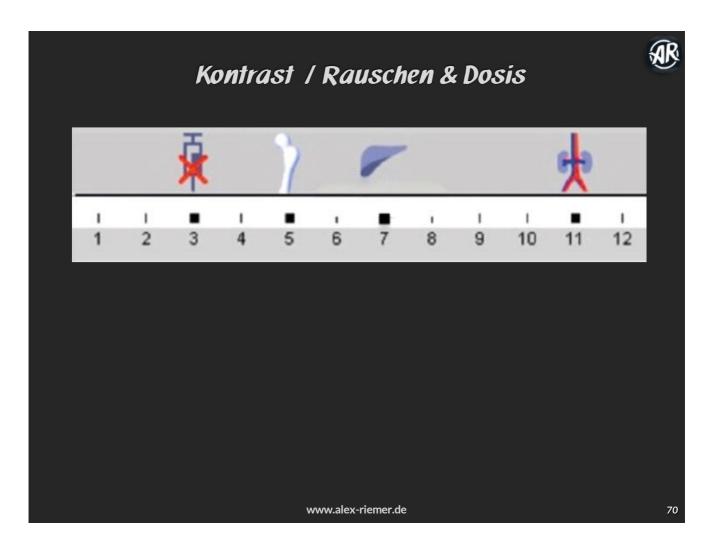


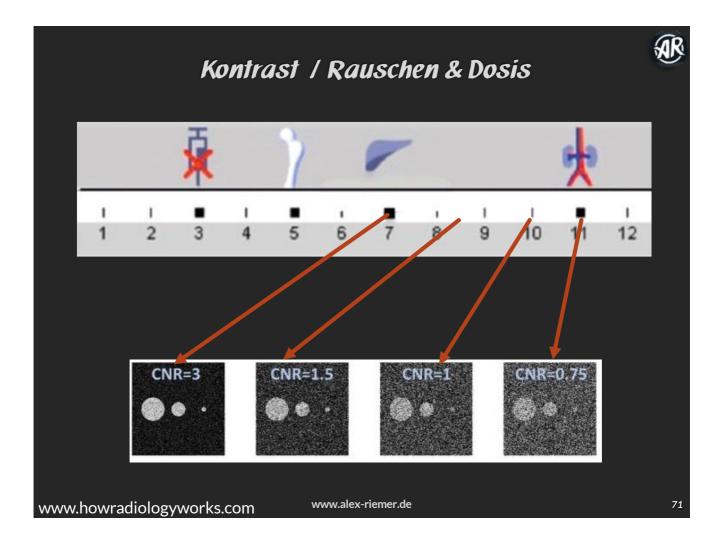






67

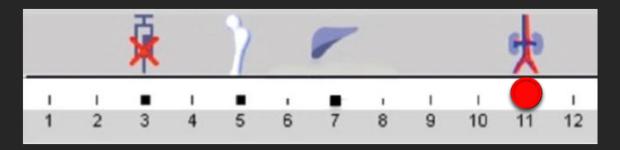

#### GE - KV-Assist





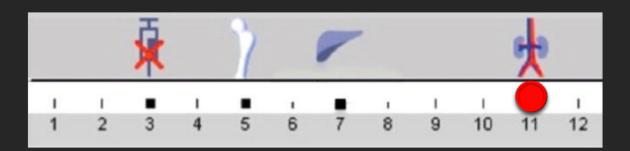

#### Siemens - Care KV








#### Care KV Einstellung



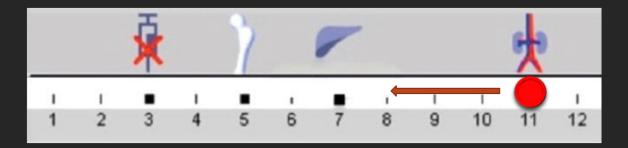



 Bei dieser Einstellung muss sichergestellt sein, dass die lod-Einbringrate (IDR)(Flow; Jodkonzentration) für eine Gefäßuntersuchung angemessen ist. Sie sollte mindestens 1200 mgJod/s betragen. Das entspricht bei einem 300'er KM einem Flow von 4ml/s.



#### Care KV Einstellung

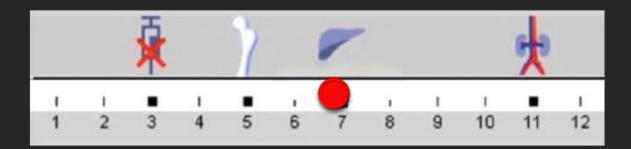



| IDD [ma/s] | Flow [ml/s] |          |          |          |          |  |  |  |  |
|------------|-------------|----------|----------|----------|----------|--|--|--|--|
| IDR [mg/s] | 300er KM    | 320er KM | 350er KM | 370er KM | 400er KM |  |  |  |  |
| 1200       | 4,0         | 3,8      | 3,4      | 3,2      | 3,0      |  |  |  |  |
| 1300       | 4,3         | 4,1      | 3,7      | 3,5      | 3,3      |  |  |  |  |
| 1400       | 4,7         | 4,4      | 4,0      | 3,8      | 3,5      |  |  |  |  |
| 1500       | 5,0         | 4,7      | 4,3      | 4,1      | 3,8      |  |  |  |  |
| 1600       | 5,3         | 5,0      | 4,6      | 4,3      | 4,0      |  |  |  |  |

www.alex-riemer.de

70

#### Care KV Einstellung

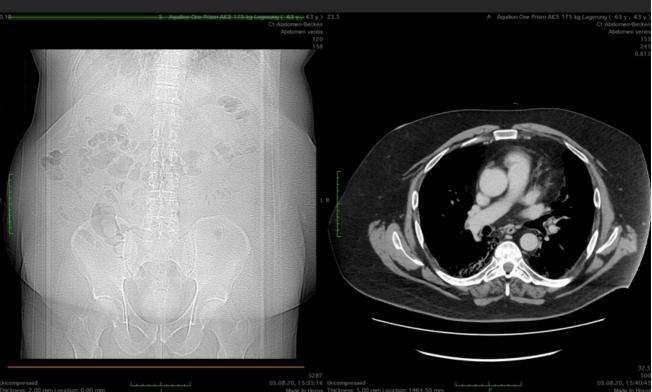





- Sollte es, aufgrund der schlechten Venen-Situation des Patienten nicht möglich sein, eine IDR von über 1200 mgl/s zu realisieren, sollte der Schieberegler in Richtung Leber verschoben werden.
- Damit wird sichergestellt, dass das Bildrauschen, im Verhältnis zum Gefäßkontrast nicht zu hoch ausfällt.



#### Care KV Einstellung




<sub>o</sub> Bei CT Untersuchungen, bei denen die Beurteilung des Parenchyms wichtig ist, sollte der Regler auf dem Lebersymbol stehen. Dies stellt ein ausreichendes Bildrauschen für die Beurteilung von Weichteilstrukturen sicher.

www.alex-riemer.de

#### 175 kg auto-kV -> 135 kV





## Niedrige Röhrenspannungen ( z.B.100 kV) können verwendet werden bei:



Kontrasterhöhung bei Gefäßuntersuchungen (z.B. CT-Angiographien)

• Auf die Funktionsweise der Belichtungsautomatik achten

**Gefäßuntersuchungen mit geringer Flowrate** (schlechte Venen, PORT, ...)

#### Dosisreduktion bei Gefäßuntersuchungen

- Auf die Funktionsweise der Belichtungsautomatik achten
- Das höhere Bildrauschen (Dosisreduktion) wird durch den deutlich besseren Jodkontrast bei niedrigen kV ausgeglichen.
- Das Kontrast zu Rausch Verhältnis kann auf diesem Wege, trotz Dosisreduktion konstant gehalten werden

www.alex-riemer.de

77

#### Herzlichen Dank für Ihre Aufmerksamkeit



#### **Alex Riemer Online Akademie**

www.alex-riemer.de/shop



Rabattcode (15%): RÖKO2023

Nur für kurze 7eit



















MANAY Slav-